
IEEE TRANSACTIONS OF VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, SEPTEMBER 2017 1

eFESTA: Ensemble Feature Exploration with
Surface Density Estimates
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Abstract—We propose surface density estimate (SDE) to model the spatial distribution of surface features—isosurfaces, ridge

surfaces, and streamsurfaces—in 3D ensemble simulation data. The inputs of SDE computation are surface features represented as

polygon meshes, and no field datasets are required (e.g., scalar fields or vector fields). The SDE is defined as the kernel density

estimate of the infinite set of points on the input surfaces and is approximated by accumulating the surface densities of triangular

patches. We also propose an algorithm to guide the selection of a proper kernel bandwidth for SDE computation. An ensemble Feature

Exploration method based on Surface densiTy EstimAtes (eFESTA) is then proposed to extract and visualize the major trends of

ensemble surface features. For an ensemble of surface features, each surface is first transformed into a density field based on its

contribution to the SDE, and the resulting density fields are organized into a hierarchical representation based on the pairwise

distances between them. The hierarchical representation is then used to guide visual exploration of the density fields as well as the

underlying surface features. We demonstrate the application of our method using isosurface in ensemble scalar fields, Lagrangian

coherent structures in uncertain unsteady flows, and streamsurfaces in ensemble fluid flows.

Index Terms—Density estimation, ensemble data visualization, uncertainty visualization, feature exploration.

✦

1 INTRODUCTION

ENSEMBLE simulations are becoming prevalent in vari-
ous scientific and engineering domains, such as climate,

weather, aerodynamics, and computational fluid dynamics.
An ensemble is a collection of data produced by simulations
for the same physical phenomenon conducted with different
initial conditions, parameterizations, or phenomenological
models. Ensemble simulations are used to simulate complex
systems, study sensitivities to initial conditions and param-
eters, and mitigate uncertainty. For example, in numerical
weather prediction, ensemble forecasts with different fore-
cast models and initial conditions are widely used to indi-
cate the range of possible future states of the atmosphere.

The focus of this work is modeling and visualizing the
positional uncertainty of surface features extracted from
3D ensemble simulation data. Surface features such as iso-
surfaces, ridge surfaces, and streamsurfaces play an im-
portant role in many scientific applications. Uncertainty
quantification of surface features based on polygon meshes
instead of field datasets (e.g., scalar fields or vector fields)
is important because field datasets that can be used to
quantify the positional uncertainty of surface features are
often not available. For example, for specific applications
such as ridge surfaces and streamsurfaces, the positional
uncertainty of the surfaces can not be quantified based
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on the vector fields without known the geometries of the
surfaces. Only using the field data, the application is limited
to modeling the positional uncertainty of isosurfaces, for
which various techniques [1], [2], [3], [4], [5], [6], [7], [8], [9]
have been proposed. Moreover, the majority of the previous
techniques [1], [2], [6], [7], [8], [9] model the uncertainty
of the scalar values at each grid point as an independent
random variable without considering correlations between
the random variables at different spatial locations. Only a
few techniques [3], [4], [5] consider the correlations of the
random variables to generate more reliable results. In this
work, isosurfaces are extracted from each ensemble member
independently, such that spatial correlations of scalar values
within each ensemble member are preserved.

Given an ensemble of surfaces, a straightforward density
estimation approach is to define a regular grid over the
surfaces, and then count the number of surfaces intersecting
each grid cell. However, after discretizing the surfaces with
respect to a given grid, the information of the surface
patches (e.g., location, orientation, and shape) within each
grid cell is lost, which introduces discretization error into
the density estimation results. Although increasing the grid
resolution can reduce the discretization error, the computa-
tion cost increases. In this work, we propose surface density
estimate (SDE), which generalizes the kernel density estimate
(KDE) from discrete sample points to the infinite set of
points on input surfaces. We approximate SDE of the input
surfaces by accumulating the surface densities of triangular
patches, which can be calculated based on bivariate normal
integrals with efficient GPU computation.

We also propose an algorithm to guide the selection
of a proper kernel bandwidth for SDE computation. Like
KDE, the most important parameter for computing a SDE is
the bandwidth, which determines the degree of smoothing
induced. An improper bandwidth may cause under- or
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oversmoothing problems. Our bandwidth selection method
is based on the variability of input surfaces. We extend the
least squares cross validation (LSCV) method to approxi-
mate the mean integrated squared error (MISE) between the
SDE and the target density field. The bandwidth is then
selected by minimizing the approximated MISE.

To further extract and visualize the major trends of en-
semble surface features, we develop an efficient interactive
visualization framework called eFESTA (ensemble Feature
Exploration based on Surface densiTy EstimAtes). In this
framework, surface of each ensemble member is first trans-
formed into a density field based on its contribution to the
SDE. The density fields are then organized into a hierar-
chical representation based on their pairwise distances. The
hierarchical representation is then used to guide the visual
exploration of the major trends of the underlying surfaces.

We compare the accuracy and performance of our den-
sity estimation method with alternative approaches using
synthetic uncertain surfaces that have known spatial dis-
tributions. Our method is able to generate more accurate
density estimation results when the computation cost is
similar to the alternative approaches. We also demonstrate
the effectiveness and usefulness of the proposed method
for different applications including visualizing and ana-
lyzing variabilities of isosurfaces in ensemble simulations,
Lagrangian coherent structures (LCSs) [10] in uncertain
unsteady flows, and streamsurfaces in ensemble fluid flows.
For the application of isosurfaces in ensemble simulations,
the proposed method generates comparable results to other
state-of-the-art approaches that rely on scalar fields. Our
method can also handle applications that are depend on
extracted surface features such as LCSs and streamsurfaces.
Moreover, by applying similarity guided visual exploration,
the major trends of ensemble surfaces can be extracted and
visualized effectively through user interaction. In summary,
the contributions of this study are threefold:

• A density estimation method to visualize and ana-
lyze ensemble surfaces

• An algorithm to guide the selection of kernel band-
width for SDE computation

• A visual exploration framework for the derived den-
sity fields

2 RELATED WORK

We review related works in ensemble visualization, uncer-
tainty visualization, and density estimation.

2.1 Ensemble Visualization

Ensemble visualization techniques can be categorized into
location- and feature-based approaches [11], [12]. Location-
based approaches compare ensemble properties at fixed
locations in the domain. Feature-based approaches extract
features from individual ensemble members and then com-
pare them across the ensemble.

We regard our study as a feature-based ensemble visu-
alization approach, and we review closely related studies
on feature-based ensemble visualization. Spaghetti plots
are a well-known visual analysis technique that overlays
an ensemble of features such as isocontours to compare

among ensemble members [13]. Phadke et al. [14] proposed
two ensemble visualization methods, pairwise sequential
animation and screen door tinting, for visualizing ensembles
that contain numerous members. Sanyal et al. [15] proposed
a tool named Noodles that uses glyphs and confidence
ribbons to visualize uncertainties for operational meteorolo-
gists. Whitaker et al. [16] and Mirzargar et al. [17] proposed
contour and curve box-plots, respectively, to visualize en-
sembles of curves based on the concept of statistical band
depth. Raj et al. [18] extended contour box-plots to 3D for
brain atlas construction and analysis. Zehner et al. [19] pro-
posed a method to render multiple isosurfaces with a spe-
cific colour scheme. Ferstl et al. [20] presented a technique
to explore the major trends in an ensemble of streamlines
based on principal component analysis and hierarchical
clustering. More recently, Ferstl et al. [21] presented an ap-
proach that uses signed distance functions to generate con-
tour variability plots for the visual analysis of an ensemble
of isocontours. They further extended the approach for vi-
sualizing the spatial and temporal evolution of isocontours
in ensembles of 2D time-varying scalar fields [22]. Demir
et al. [23] proposed a technique to visualize ensembles of
isosurfaces based on screen-space silhouettes.

However, the previous works mainly focus on line
features (e.g. contour lines); and for surface features the
previous works can not show point-wise quantitative infor-
mation. Unlike previous works, we analyze the variability
of ensemble surfaces using density estimation, thus the
probability density of surfaces passing through any given
location can be quantified.

2.2 Uncertainty Visualization

We summarize the closely related studies on uncertainty
quantification and visualization of features extracted from
uncertain scalar and vector datasets, such as isocontours
and flow lines. Comprehensive reviews of uncertainty vi-
sualization can be found in [24], [25], [26].

Uncertain scalar field visualization For visualizing
and analyzing features extracted from uncertain scalar
datasets, such as isocontours, a number of visualization
techniques have been presented. A class of uncertainty
visualization techniques conveys uncertainties by visualiz-
ing potential errors or variability of point positions with
colors [27], [28], [29] or point-based primitives [30]. Re-
cent studies focus more on uncertainty quantification and
visualization using statistical analysis techniques. Thomp-
son et al. [1] introduced a new data representation for
uncertain scalar data, called hixels, which enables fuzzy
isosurface visualization to indicate the possible isosurface
locations in the data. Pöthkow and Hege [2] proposed a
technique that approximates the level crossing probabilities
(LCPs) [5] with parametric models for uncertainty analy-
sis of isocontours. Based on this method, Pöthkow et al.
proposed the probabilistic marching cubes algorithm [4].
Recently, Pöthkow and Hege proposed a nonparametric
statistical analysis framework for uncertain isosurfaces vi-
sualization [31]. Athawale and Entezari [6] presented a
closed-form computation of the level crossing probabilities
for studying the interaction between linear interpolation
and data uncertainty quantified by the uniform distribu-
tion. More recently, Athawale et al. presented an isosurface
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extraction algorithm [7] for uncertain scalar fields where
the data uncertainty is modeled by nonparametric statistics.
Hazarika et al. [32] proposed a coupla-based technique
for LCP approximation. Pfaffelmoser et al. proposed [3] a
method to determine more reliable LCPs by considering cor-
relations in the data. Kumpf et al. proposed contour proba-
bility plots [9] to depict lobes, which indicate the probability
that a contour line is locally contained in the lobe. Sakhaee
and Entezari [8] presented a spline-based framework to
quantify and propagate the uncertainty through the volume
rendering pipeline.

In general, the previous works mainly focused on model-
ing the positional uncertainty of isosurfaces using uncertain
scalar fields. Unlike the previous works, we take a geometry
based approach that analyzes and visualizes variability of
surfaces represented as geometries (e.g., triangular meshes),
such that our method can be applied on applications that
scalar fields are unavailable (e.g., LCSs and streamsurfaces).

Uncertain vector field visualization Various tech-
niques have been proposed for visualizing uncertain vector
datasets. A class of techniques focus on encoding uncertain-
ties in vector datasets as additional visual channels, such
as glyphs [33], [34], [35] and textures [36]. Another class
of techniques analyze and visualize features extracted from
uncertain vector datasets by extending methods used in
deterministic flow fields such as streamlines and stream
ribbons [24]. Petz et al. [37] presented a statistical analy-
sis framework to extract probabilistic local features from
uncertain vector fields considering their spatial correlation
structure. Bhatia et al. [38] presented streamwaves to visu-
alize spatial errors of edge maps used in particle tracing.
The concept of LCS has also been extended to visualize and
analyze uncertain time-varying flow fields by Haller [39]
and Guo et al. [40]. Unlike previous methods that mainly
focus on studying uncertain local features or flow lines, the
proposed method in this paper can be applied to uncertain
surface features such as LCSs and streamsurfaces extracted
from uncertain flow fields.

2.3 Density Estimation

We review studies on density estimation for various appli-
cations in the context of data analysis and visualization,
including density estimation of particles, graphs, parallel
coordinate plots (PCPs), trajectories, and surfaces.

Density estimation of particles has been extensively
studied for visualization and analysis. Peterka et al. [41]
reviewed and evaluated density estimation methods that
transform particles to a probability density field, including
cloud in cell (CIC) [42], smoothed particle hydrodynamics
(SPH) [43], tessellation (TESS) [44], [45], and adaptive cloud
in cell (ACIC) [46]. CIC [42] is a first-order method that
linearly interpolates the particle’s mass to points of esti-
mation within a fixed-size hypercube. The size and shape
of the region over which the particle’s mass is distributed
were further adjusted for each particle in the SPH [43]
and TESS [44], [45]. Concepts of CIC and SPH were then
combined in ACIC [46], in which the size of the hypercube
adapts to cover a given number of particles as in SPH.

Density estimation has also been extended to ana-
lyze and visualize more complex data types, including

graphs, PCPs, trajectories, and surfaces. Zinsmaier et al. [47]
proposed a technique that aggregates node density with
KDE [48] and generates meta edges for visualizing large
graphs interactively with adjustable levels of detail. Hurter
et al. [49] proposed a method to compute bundled layouts
of general graphs based on density estimates of graph
edges. Heinrich and Weiskopf [50] proposed continuous
parallel coordinates, which visualizes PCPs using density
estimation. Zhou et al. [51] proposed a method to visu-
alize PCPs as density fields using splatting. Muigg [52]
employed anisotropic diffusion of noise textures to visualize
line orientations for PCPs. Scheepens et al. presented a
method to explore density maps of trajectories with multiple
attributes [53] and extended it by compositing multiple
density fields for more comprehensive analysis [54]. Lampe
et al. presented KDE-based visual analysis methods for
scatterplots of dynamic data [55] and spatiotemporal trajec-
tories [56]. They further presented a technique for rendering
smooth curves independent of frequencies, zoom level, and
models based on KDE [57]. Guo et at. [40] proposed a
method to transform uncertain LCSs into a density field
based on SPH and a zero-order kernel function that is
uniformly distributed in the volume of a sphere. Compared
with U-LCS, our work generalizes kernel density estimation
with higher-order kernel functions (e.g., the Gaussian ker-
nel) for transforming ensemble surfaces to density fields.

3 OVERVIEW

In this work, we start with an ensemble of surface features
represented as polygon meshes. Instead of visualizing the
surfaces directly, such as with overlaid rendering, we visu-
alize and analyze the surfaces based on their spatial distri-
bution. To model the spatial distribution of the surfaces, we
present surface density estimate (SDE) (details in Section 4),
which we define as the kernel densities of the infinite set of
points on the input surfaces. By computing the SDE, surface
features are transformed into a density field, which is then
visualized using existing volume exploration techniques
such as volume rendering. A bandwidth selection method
(details in Section 5) is also proposed to guide the selection
of a proper kernel bandwidth.

To further extract and visualize the major trends of
ensemble surface features based on the SDE, we present an
efficient interactive visualization framework called eFESTA
(details in Section 6). Our system has two major modules:
the density estimation module and the exploration module,
as shown in Figure 1. Given an ensemble of surfaces S0, S1,
. . . , SN−1 (Figure 1(a)), we first select a bandwidth for SDE
computation based on the variability of the surfaces. Then
for each surface Si, a density field Di (Figure 1(b)) is gener-
ated based on its contribution to the SDE, where the density
value at each grid point represents the probability density of
the point being on the current surface. The resulting density
fields from the density estimation module are then used in
the exploration module for comparative analysis and inter-
active visualization of the underlying surfaces. For efficient
visual exploration, we organize the density fields into a
hierarchical representation (Figure 1(c)) that groups similar
density fields into clusters. This representation is then used
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Fig. 1. Overview of the exploration workflow. We begin with an ensemble of surface features (a), whose corresponding density fields (b) are
generated based on density estimation. The resulting density fields are organized into a hierarchical representation (c) based on their pairwise
distances. The hierarchical representation is then used to guide the visual exploration of the surfaces (d) and the density fields (e).

to guide the visual exploration of the surfaces (Figure 1(d))
and the corresponding density fields (Figure 1(e)).

4 SURFACE DENSITY ESTIMATE

We present SDE, which generalizes KDE from discrete sam-
ple points to surfaces. In this section, we first give a formal
definition of SDE and then describe how to approximate the
SDE from a given surface.

4.1 SDE Definitions

We start with a review of multidimensional KDE for discrete
data points and then extend KDE for SDE. Given a set of
discrete data points x0, x1, . . . , xn−1 in R

d, where d is

the dimensionality of space, the KDE f̂H(x) is defined as
a convolution of the data points with respect to a smoothing
kernel KH at position x,

f̂H(x) =
1

n

n−1
∑

i=0

KH(x− xi), (1)

where KH is defined as

KH(x) = |H|−
1

2K(H− 1

2x), (2)

H is a symmetric positive definite bandwidth matrix that
controls the degree and orientation of smoothing, and K is
the kernel function, which is a symmetric multivariate prob-
ability density function. Among various of kernel functions,
the multivariate Gaussian kernel,

K(x) =
1

√

(2π)d
e−

1

2
x
T
x, (3)

is the most widely used kernel function for KDE, we thus
use the multivariate Gaussian kernel to demonstrate the
concept of SDE in this study.

Given a surface S, we define the SDE as the kernel
densities of the infinite set of points on the surface. In other
words, the SDE is the convolution of every point p ∈ S with
respect to a smoothing kernel KH at any position x in R

3,

ŜH(x) =
1

Area(S)

∫∫

S

KH(x− p)dS, (4)

where Area(S) is the area of the surface S.

0

1.5e-4

(a) (b) (c)

Fig. 2. Density fields generated for a triangular patch: (a) and (b) show
KDEs calculated based on 104 and 105 sample points, respectively; (c)
shows SDE calculated analytically based on the triangular patch.

4.2 SDE Calculation

To calculate the SDE for a given surface S, we first discretize
the surface as a triangular mesh, which comprises a set
of triangular patches T0, T1, . . . , Tn−1. Then, for each
triangular patch T , we compute its surface density τH(x, T )
with respect to the surface S. The τH(x, T ) is defined as
the convolution of every point p ∈ T with respect to a
smoothing kernel KH at target position x and normalized
by the area of the surface S,

τH(x, T ) =
1

Area(S)

∫∫

T

KH(x− p)dT

=
1

Area(S)
|H|−

1

2

∫∫

T

K(H− 1

2 (x− p))dT.
(5)

We then approximate the SDE of the surface S by accu-
mulating the surface densities contributed by its triangular
patches,

ŜH(x) =
n−1
∑

i=0

τH(x, Ti), (6)

The surface density of a triangular patch can be approxi-
mated with the KDE over points sampled from the triangu-
lar patch. Figures 2 (a) and (b) show two example density
fields constructed for a single triangular patch as KDEs
over 104 and 105 sample points, respectively. More accurate
results can be generated by increasing the number of sample
points, but the computation cost increases. In this work, we
present a method to compute SDE analytically instead. The
density field constructed for the same triangular patch using
our method is shown in Figure 2 (c). We can see that our
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Fig. 3. Mapping a 3D triangle (a) into 2D (b) by parameterizing the
triangle in the 2D space defined by the plane of the triangle. The origin
o of the 3D space is projected onto the plane of the triangle at w that
is treated as the origin of the 2D space. 2D equivalent of each point p′

within the triangle is denoted as q.

method can generate more accurate results compared with
KDE over discrete sample points. Also, by computing SDE
analytically instead of performing KDE on a large number
of sample points, the computation cost reduces. Our method
transforms the calculation of SDEs into the calculation of
integrals of the standard bivariate normal distribution over
2D triangular areas by parameterizing each triangular patch
in 2D space as explained below.

4.2.1 Transforming Surface Density into Bivariate Normal

Integral

The surface density for a triangle T is defined as a surface
integral of the kernel KH over T , as shown in Equation 5.
By parameterizing the triangle in 2D space, this surface
integral can be transformed into an ordinary integral over
a 2D triangular area. To achieve this, we first transform T

based on the target position x and the bandwidth matrix H

by applying the transformation

p′ = H− 1

2 (x− p) (7)

for each vertex p ∈ T . After the transformation, the triangle
T is transformed into a new triangle T ′, and the surface
density of T becomes an integral of the kernel function K

over the triangle T ′,

τH(x, T ) = cT

∫∫

T ′

K(p′)dT ′, (8)

where cT = |H|−
1

2
dT
dT ′

= |H|−
1

2
Area(T )
Area(T ′) . After the transfor-

mation, the surface density of T depends only on the kernel
function K and the transformed triangle T ′.

We now parametrize the triangle T ′ in the 2D space
and transform the surface integral over the triangle T ′ into
the integral over a 2D triangular area. We first project the
3D origin o onto the plane of the triangle T ′ and use the
projected point w as the origin of the 2D space, as shown
in Figure 3 (a). 2D equivalent of each point p′ ∈ T ′ is
then defined as q = (u, v)T in R

2 with w as the origin,
as shown in Figure 3 (b). Because the standard multivariate
normal kernel, which is rotation invariant, is used as the
kernel function K, the integral of K over the triangle T ′ is
transformed to the integral over a 2D region T :

τH(x, T ) = cT

∫∫

T

K((u, v, λ)T )dudv, (9)

where λ = ‖w − o‖. The standard multivariate normal
kernel K is further decomposed into the product of lower
dimensional standard normal distributions, and the integral
of K over the 2D region T can be defined as a product of the
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Fig. 4. Computing the bivariate normal integral over a triangle T , de-
noted as α

T
. Integrals αAB , αBC , and αCA are first computed based

on the method proposed by Owen [58]. Then α
T

can be computed by
combining αAB , αBC , and αCA, for which there are two cases. (a) The
origin is inside the triangle and (b) The origin is outside the triangle.

density of a 1D standard normal distribution at position λ

and an integral of the 2D standard normal distribution over
the 2D region T ,

τH(x, T ) = cTN(λ)

∫∫

T

N2((u, v)
T )dudv, (10)

where N(λ) and N2((u, v)
T ) are the standard uni- and

bivariate normal distributions, respectively.

4.2.2 Computing Bivariate Normal Integral

To calculate the bivariate normal integral over T , denoted
as αT , we use the method proposed by Owen [58] and
extended by Donnelly [59]. Let O be the origin and AB be an
edge of a given triangle, Owen’s method gives the bivariate
normal integral over an area defined by line OA, OB, and
beyond line AB, denoted as αAB . (Details in Appendix A.)

To calculate the integral of the standard bivariate normal
distribution over a triangle T defined by vertices A, B, and
C , we first calculate integrals αAB , αBC , and αCA, and then
combine them to get the integral αT . There are two cases for
combining αAB , αBC , and αCA, as illustrated in Figure 4. In
Figure 4 (a), the origin is inside the triangle, and the integral
αT is computed with

αT = 1− αAB − αBC − αCA. (11)

If the origin is outside the triangle, as shown in Figure 4 (b),
the integral αT is computed with

αT = αBC + αCA − αAB . (12)

5 BANDWIDTH SELECTION WITH LEAST SQUARES

CROSS VALIDATION (LSCV)

We propose a method to guide the selection of the band-
width based on the variability of ensemble surfaces. The
crucial parameter for computing SDEs is the bandwidth
matrix H, because it controls the degree and orientation of
smoothing induced [60]. There are three classes of the band-
width matrix H: positive scalars times the identity matrix
H = σ2I, which have the same amount of smoothing in all
directions; diagonal matrices H = diag(σ2

0 , σ
2
1 , . . . , σ

2
d−1),
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with individual smoothing in each of the dimensions; and
symmetric positive definite matrices, which allow arbitrary
amount and orientation of smoothing. In this work, we
use the first class of the bandwidth matrix H = σ2I,
which assumes a single smoothing for all directions that is
controlled by a positive constant value σ2. Note that σ may
result in different scales in the physical space, if the grid
coordinate system scales differently on each dimension.

To select a proper σ, we use the most common optimality
criterion, which is the mean integrated squared error (MISE)

between the SDE ŜH(x) with respect to a bandwidth matrix
H and the target probability density function S(x):

MISE(H) = E

[
∫

R3

(ŜH(x)− S(x))2 dx

]

. (13)

Because the target probability density function S(x) is un-
known, we use the LSCV method [61], [62] to approximate
the MISE. The existing LSCV method is defined for a set
of discretized data points x0, x1, . . . , xn−1, which approxi-
mates the MISE as

LSCV(H) =

∫

R3

f̂H(x)2 dx−
2

n

n−1
∑

i=0

f̂−i(xi), (14)

where f̂H(x) is the KDE at position x, and f̂−i(xi) is
the leave-one-out estimator that estimates the density at
position xi for the input data points except xi:

f̂−i(xi) =
1

n− 1

n−1
∑

j=0,j 6=i

KH(xi − xj). (15)

We extend the LSCV for ensemble surfaces by redefining
the leave-one-out estimator. For an ensemble of surfaces S0,
S1, . . . , SN−1, we subsequently take out one surface Si,
then estimate the surface density for the remaining surfaces.
Like LSCV, we take out one surface Si each time, then
compute the leave-one-out estimator on points sampled
from the surface Si and accumulate the results. The LSCV
for ensemble surfaces is then defined as

LSCV(H) =

∫

R3

ŜH(x)2 dx−
2

A(S)

N−1
∑

i=0

∫∫

Si

Ŝ−i(p)dSi.

(16)
To pick a proper bandwidth matrix based on the smoothing
factor σ2, we minimize the function LSCV(H) for σ values
within the interval (0,+∞). To this end, we use the golden-
section search method [63], which successively narrows the
interval of σ in which the minimum of LSCV(H) occurs
until the interval is small enough. In this work, we start from
an interval (0, a], which satisfies a condition that within
(0, a] we can find at least one σ that gives a LSCV(H)
smaller than the LSCV(H) given by a.

When the ensemble surfaces have similar shape and
spatial location, the leave-one-out estimator decreases more

slowly than
∫

ŜH(x)2 dx increases when the smoothing
factor σ2 of the bandwidth matrix decreases, because the
other surfaces are close to the removed surface. On the
other hand, if the ensemble surfaces are far away from each
other, the leave-one-out estimator decreases rapidly when
the smoothing factor σ2 of the bandwidth matrix decreases.
Because there is no analytic solution for the evaluation of

(a) (b) (c) (d)

Fig. 5. (a) Density field of an ensemble of isocontours in 2D. (b)-(d)
Three possible shapes of the isocontours.

LSCV(H), we evaluate it numerically based on Riemann
sums in this work.

6 VISUAL EXPLORATION OF SDE

We design a visual exploration framework called eFESTA
to visualize and analyze ensemble surfaces based on SDE.
Based on the method presented in preceding sections, an
ensemble of surfaces S0, S1, . . . , SN−1 can be transformed
into a SDE, which represents the spatial distribution of the
surfaces. The SDE is represented as a scalar field where the
scalar value at a given grid point represents the probability
density of the surfaces passing through it. By visualizing
the SDE using existing volume exploration techniques such
as volume rendering, the user is able to get an overview
of how the surfaces are distributed in the spatial domain.
However, the shape and the major trends of the surfaces
require further analysis and exploration. For example, in
Figure 5 (a) the density estimation result for an ensemble of
isocontours in 2D is visualized. Based on the visualization, it
is difficult to determine the shape of the isocontours. Various
possible shapes of the isocontours can be inferred from the
visualization of the SDE, such as the three possible shapes
shown in Figures 5 (b), (c), and (d). It is also difficult to
get the percentage of a particular class of shape. To answer
these questions, our framework transforms the surfaces S0,
S1, . . . , SN−1 to an ensemble of density fields D0, D1,
. . . , DN−1 based on their contribution to the SDE. In other
words, the SDE equals to the sum of D0, D1, . . . , DN−1.
We then extend the method presented in [64] to organize
the density fields into a hierarchical representation based
on the similarity between them. The resulting hierarchical
representation is used to guide visual exploration of the den-
sity fields as well as their corresponding surfaces. Below we
describe the method to organize density fields hierarchically
and the design considerations and choices of our interface.

6.1 Hierarchical Representation of Density Fields

For efficient visual exploration, we organize density fields
into a hierarchical representation based on the similarity
between them. We first compute a distance matrix con-
taining the distances between every pair of the density
fields and organize the density fields into a binary tree
based on hierarchical clustering. Below are the key steps
of constructing the hierarchical representation.

We treat each density field as a point in high-dimensional
space R

m, where m equals to the number of grid points
in the density field. Then the distance between the density
fields is computed as the l2-norm distance in R

m, and
stored in a distance matrix. Based on the distance matrix,
agglomerative hierarchical clustering is then performed to
build a hierarchy of clusters (an unbalanced binary tree) of
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TABLE 1. Data specifications and performance (in seconds). td: timings for density estimation; tc: timings for hierarchical clustering; tr : response
time for interactive queries (i.e., selecting a node in the hierarchical clustering tree).

Dataset Application
Number of Number of Resolution of

Bandwidth σ
Performance (s)

Members Triangles Density Field td tc tr
Tangle Isosurface 50 330,772 249× 249× 249 0.185 1.3× 102 1.78 3.6× 10−3

∼ 4.8× 10−2

MBST-98 Isosurface 600 307,044 179× 105× 31 0.38 0.9× 101 2.26 8.4× 10−4
∼ 6.1× 10−2

HRRR LCS 100 4,773,666 224× 132× 36 0.67 1.9× 102 1.37 1.3× 10−3
∼ 2.7× 10−2

Square Cylinder Streamsurface 40 43,636 383× 127× 95 0.3 0.8× 101 0.82 2.2× 10−3
∼ 1.3× 10−2

the density fields in a bottom-up manner. Starting with each
density field in a separate cluster, the hierarchy is built by
merging pairs of similar clusters until all density fields are
contained in a single cluster. Distance between clusters is
determined based on Ward’s method [65], which calculates
the distance between a pair of clusters as the change of the
total sum of squares after merging. In this way, the sum of
the distances between data points and the new cluster center
after merging is minimized. After clustering, similar density
fields are grouped into the same subtree, from which the
major trends of the surfaces can be extracted and visualized
by selecting subtrees.

6.2 Visual Exploration with Hierarchical Clustering

Tree

We design a system for interactive visual exploration of
density fields and their corresponding surfaces guided by
the hierarchical clustering tree generated before. Our system
consists of two linked views: a hierarchical clustering tree
view and a spatial view.

The hierarchical clustering tree view is provided to help
users select and explore ensemble surfaces at different hi-
erarchies. In this work, a radial tree layout is chosen to
visualize the hierarchical clustering tree. Compared with
a linear tree layout, the radial tree layout utilizes space
more effectively. The root of the hierarchical clustering tree
is placed at the center of the layout, and the distance
of a node from the root encodes the level of the node.

S₀

S₁₂

S₂₄

S₃₇

S₄₉

ring layout

hierarchical

clustering tree

Fig. 6. Hierarchical clustering tree
view, where ring layout represents
surfaces ordered by their IDs from
S0 to SN−1. When a node is se-
lected, the corresponding ring seg-
ments are enlarged and highlighted.

A ring layout is then
drawn around the hierar-
chical clustering tree to in-
dicate the surface features
extracted from each en-
semble member. The sur-
face features are ordered
based on their IDs in the
ring layout. When the user
selects a node of inter-
est, the corresponding ring
segments are simultane-
ously enlarged and high-
lighted. The user can also
adjust the total number of
leaf nodes (i.e., the maxi-
mum number of clusters in
the hierarchical clustering) in the tree layout to reduce visual
clutter. In this work, the total number of leaf nodes is
set to 20. Figure 6 shows the visualization of an example
hierarchical clustering tree view.

The spatial view has two subviews: a density field view
and a surface view. The density field view is used to
visualize a density field of interest, and the surface view
shows the corresponding surfaces. After the user selects one

node in the hierarchical clustering tree view, a density field
is constructed on the fly by aggregating the density fields
in the leaf nodes of the selected subtree; the density field
view is updated interactively with direct volume rendering.
We color the density fields using a single-hue colormap
from dark green to light green, and the user can adjust the
opacity transfer function to highlight regions with different
density values. The surfaces of corresponding ensemble
members are shown in the surface view as spaghetti plots.
The surfaces are rendered with transparency such that the
interior of the surfaces can be visualized. The spatial view
is linked with the hierarchical clustering tree view. When
the user hovers over a node of interest, the spatial view is
simultaneously updated to visualize the density field and
the surfaces of the selected ensemble members.

7 IMPLEMENTATION DETAILS AND PERFORMANCE

EVALUATION

We parallelize the calculation of SDE over grid points us-
ing a GPU to handle millions of triangular patches over
a density field discretized by millions of grid points. In
our implementation, each GPU thread estimates the surface
density at a grid point by iterating over all the triangles of
the given surface. To further improve the performance of the
SDE calculation, we filter out triangles whose contribution
to the density at a target grid point is negligible. For each
triangle, we first construct its axis-aligned bounding box
and enlarge the bounding box for 4σ, where σ is the band-
width. The reason for using 4σ is because the probability of
a Gaussian distribution over the region within 4σ is greater
than 99.99%, and we hence neglect the contribution of a
Gaussian distribution to the density at a location whose
distance to the mean is greater than 4σ. For a given grid
point, we test whether it is within the bounding box or not.
If the grid point is within, we evaluate the surface density
of the triangle over the grid point; if not, then we consider
the triangle has zero contribution to the density at the grid
point so no density estimation for that triangle is performed.
The resulting density fields are stored as textures in the GPU
memory for further visualization and exploration.

The prototype system is implemented with C++ and
CUDA. All the experiments were performed on a work-
station with two Intel Xeon E5620 CPUs (2.40 GHz), 12
GB memory, and an Nvidia Tesla K40c GPU. Table 1 re-
ports the timings for the proposed ensemble exploration
framework. The density estimation takes 1 to 3 minutes,
and the hierarchical clustering takes a couple of seconds.
The response time after the user selecting a node in the
hierarchical clustering tree is less than 0.1 second.

8 RESULTS

In this section, we first compare SDE with two alternative
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Fig. 7. Visualization of the three synthetic ensembles of spheres: (a)
distributions of radius; (b)ground truth density fields; (c)-(e) density
estimation results of IC, IKDE, and our method, respectively.

approaches using a synthetic ensemble of surfaces that have
known spatial distributions in Section 8.1. The comparison
shows that the proposed method generates more accurate
density estimation results than the other two approaches
when the computation costs are similar. Then we show the
usefulness and generality of SDE by applying it on ensemble
surfaces for three applications, including ensemble isosur-
faces in Section 8.2, LCSs in uncertain unsteady flows in
Section 8.3, and streamsurfaces in ensemble fluid flows in
Section 8.4. For all three applications, the proposed method
is able to characterize how the surfaces are distributed in the
spatial domain by only using polygon meshes. Moreover,
for the application of ensemble isosurfaces, the proposed
method is able to generate comparable results to previous
methods that require scalar fields to be available.

8.1 Synthetic Ensemble Surfaces

In this experiment, we focused on evaluating the accuracy
of the proposed density estimation method and comparing
it with alternative approaches. To this end, we first synthe-
sized ensemble surfaces with respect to a predefined spa-
tial distribution. Density estimation approaches were then
performed on the generated surfaces. Finally, the resulting
density fields were compared with the spatial distribution
that was used to guide the generation of the surfaces.

The ensemble surfaces used for evaluation were based
on a sphere centered at the origin with an uncertain radius.
The uncertainty of the radius was regarded as a random
variable R that was defined as a PDF f(r). Three different
f(r) were tested in the experiment, including a Gaussian
distribution, a shifted exponential distribution, and a bi-
modal distribution (i.e., a Gaussian mixture modeled with
two Gaussian components) as shown in Figure 7(a). Based
on f(r), the probability density of a spatial location x ∈ R

3

on the sphere can be computed analytically as follows. We
first compute the distance d from x to the center of the
sphere and then evaluate f(r) at d. In the end, we normalize
the result such that the density values integrate to 1 for
all x ∈ R

3. In the experiment, the density values were
evaluated on the grid points of a regular grid with a spatial
resolution of 2563. The resulting density field was treated
as the ground truth, as shown in Figure 7(b) using volume
rendering. A clipping plane is placed at the center of the
sphere to make the interior visible. An ensemble of spheres
was then generated based on each f(r). A set of radiuses

(a) (b)
Ensemble Size Ensemble Size

Fig. 8. Quantitative analysis of the proposed method for the three
synthetic ensembles of spheres with different ensemble sizes from 128
to 2,048 for every power of 2: (a) bandwidth σ suggested by the pro-
posed bandwidth selection method, (b) PSNR (db) between the density
estimation results of the proposed method and the ground truth.

was first sampled randomly based on f(r), and then a
sphere mesh was constructed for each radius by subdividing
the sphere along θ and φ in spherical coordinates.

The SDE and two alternative density estimation ap-
proaches were applied on the ensemble of spheres, which
are detailed as follows.

SDE The proposed bandwidth selection method was
first applied on the ensemble of sphere meshes. Then the
SDE was calculated based on the selected bandwidth.

Intersection count (IC) First, a regular grid was de-
fined over the spheres. Then, the count of sphere meshes
intersecting each grid cell was computed based on triangle-
box intersection [66]. Finally, the count of each cell was
normalized by the total count to estimate the density field.

Intersection-based KDE (IKDE) Similar to IC, a reg-
ular grid was defined over the sphere meshes first. Then,
for each sphere mesh, we extracted active cells (i.e., grid
cells that intersect the sphere meshes). Finally, we performed
point-based KDE over the center of the active cells to esti-
mate the density field. For comparison, the bandwidth used
for KDE was the same as SDE.

The resulting density fields were then compared with
the ground truth to evaluate the accuracy and performance
of the three approaches.

We first evaluated the accuracy of the proposed method
by applying it to ensembles of spheres with different en-
semble sizes (i.e., number of ensemble members) from 128
to 2,048 for every power of 2. The SDEs were computed on a
regular grid with a spatial resolution of 2563. The bandwidth
selection results with respect to different ensemble sizes
are shown in Figure 8(a), we can see that more ensemble
members lead to a smaller bandwidth. Figure 8(b) shows
the peak signal-to-noise ratio (PSNR) between the SDE
and the ground truth. We can see that the PSNR increases
when the ensemble size increases, because more samples
can better fit the underlying distribution. Also, our method
can generate density fields that are close to the ground truth.
For example, the PSNRs are greater than 30db for all three
f(r) when the ensemble size is greater than 1,024.

We then compared the accuracy and performance of
the proposed method with IC and IKDE. Because the grid
resolution plays an important role in the accuracy of IC and
IKDE, we compared the three approaches on different grid
resolutions from 83 to 2563 for every power of 2. In order to
compare with the ground truth, the resulting density fields
were then upsampled to 2563 using trilinear interpolation.
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Fig. 9. Example of counting the number of circles intersecting grid cells.
Because of the discretization, errors are introduced into the resulting
density field. For example, points P and Q should have the same density,
but different densities are assigned to P and Q in the result.

The ensemble size is fixed to 2,048 in this comparison. For
all three approaches, the computation was parallelized over
grid points using GPU.

The visualization of the resulting density fields gener-
ated by IC, IKDE, and our method are shown in Figures 7(c),
(d), and (e), respectively. The grid resolution of each ap-
proach in Figure 7 is the resolution that corresponds to
the best density estimation result, which are 323, 2563, and
2563 for IC, IKDE, and our method, respectively. We can
see that the density fields generated by our method are
visually similar to the ground truth, and undesirable arti-
facts are introduced into the density fields generated by IC
and IKDE. This is because after discretizing surface patches
with respect to a given grid, the information of the surface
patches (e.g., location, orientation, and shape) within each
grid cell is lost, which will introduce discretization error into
the density estimation results. Figure 9 shows a 2D example
of such discretization error. In this example, a density field is
estimated for two circles using IC. We can see that different
density values are assigned to spatial locations that should
have the same density value (e.g., points P and Q). This dis-
crepancy is caused by the discretization of space. Although
increasing the grid resolution can reduce the discretization
error, it will reduce the accuracy and performance of IC and
IKDE, which are discussed in detail as follows.

The PSNRs between the density fields and the ground
truth are shown in Figures 10 (a), (c), and (e). Also, the per-
formance of the three approaches are shown in Figures 10
(b), (d), and (f). We can see that IC takes the least amount
of time, but generates the worst results for all three f(r).
Also, the accuracy of IC increases in the beginning and starts
decreasing when the grid resolution is greater than 323. This
is because on one hand, the discretization error decreases as
the grid resolution increases, and on the other hand, the size
of grid cells is too small to capture the spatial distribution
of the surfaces when the grid resolution is too high. More
specifically, if the size of grid cells is too small, most grid
cells only intersect individual surface patches once. As a
result, the density field becomes sparse and noisy. IKDE
does not suffer from this problem when the grid resolution
is too high, because even most grid cells only intersect
individual surface patch, the intersected cells can contribute
density to neighboring cells by using KDE. Hence, increas-
ing grid resolution can improve the accuracy of IKDE, as
shown in Figures 10(a), (c), and (e). However, when the grid
resolution increases, the number of active cells increases as
well. As a result, IKDE needs to perform KDE on more
points. In contrast, our method performs density estimation
on the same number of triangular patches when the grid
resolution changes. Hence, the computation cost of IKDE
increases faster than our method when the grid resolution

(a) (b)

(c) (d)

(e) (f )

SDE

IC

IKDE

SDE

IC

IKDE

SDE

IC

IKDE

SDE

IC

IKDE

SDE

IC

IKDE

SDE

IC

IKDE

Fig. 10. Quantitative comparison for IC, IKDE, and our method: (a),
(c), and (e) PSNR (db) between the density estimation results and the
ground truth; (b), (d), (f) timings for density estimation.

increases, as shown in Figures 10(b), (d), and (f). When the
grid resolution equals to 2563, our method takes less time
than IKDE and produces more accurate results.

8.2 Isosurfaces in Ensemble Scalar Fields

We applied the proposed method on two ensemble scalar
fields: a synthetic ensemble dataset based on the tangle
function [67] and a real-world ensemble simulation data
in environmental science. For the synthetic dataset, we
compared the proposed method with the state-of-the-art
approaches on uncertain isosurface visualization.

8.2.1 Synthetic Ensemble Scalar Fields

Our first experiment was performed on a synthetic ensem-
ble dataset based on the tangle function. The ensemble was
obtained by injecting multiple realizations of noise in the
scalar field. The noise samples were generated by sampling
10 Gaussian kernels with shifted means and a fixed standard
deviation 0.18, with 5 samples per kernel, to create an en-
semble scalar dataset with 50 members. Seven kernels were
placed closer to the underlying value, and three kernels
were placed farther away. An ensemble of isosurfaces was
then extracted for the isovalue of −0.6. Figure 11 (a) shows
the spaghetti plots of the isosurfaces with one slice extracted
and highlighted. The slice is defined by a plane at the
location (0, 0, 21.75) with a normal (0, 0, 1).

When scalar fields are available, various techniques can
be used to model the positional uncertainty of isosurfaces. In



IEEE TRANSACTIONS OF VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, SEPTEMBER 2017 10

0

5.4e-4

0

5.4e-4

(f ) SDE

-50

50

-50

50

(c) fuzzy isosurfacing(a) spaghetti plots

0%

100%

0%

100%

(b) CPP (d) SDVR

0

0.32

0

0.32

(e) LCP

Fig. 11. Visualization of the isosurfaces extracted from the synthetic ensemble scalar fields using different methods: (a) spaghetti plots, (b) CPP [9],
(c) fuzzy isosurfacing [1], (d) SDVR [8], (e) LCP [31], and (f) SDE. Notice that different techniques quantify the positional uncertainty of isosurfaces
with different metrics. Hence, the results have different value ranges and have to be visualized using specific transfer functions.
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Fig. 12. Example of correlation between random variables at different
spatial locations: (a) locations P and Q that random variables are defined
on, (b) histogram of scalar values at P, (c) histogram of scalar values at
Q, and (d) scatter plot of scalar values at P and Q.

this experiment, we compared our method with four tech-
niques that are working on uncertain scalar fields, including:
contour probability plots (CPPs) [9], fuzzy isosurfacing [1],
statistical direct volume rendering (SDVR) [8], and level
crossing probabilities (LCPs) [31] detailed as follows.

CPP For each grid point, the CPP is defined as the
percentage of scalar values that are greater than the iso-
value, which is from 0% to 100%. Given an ensemble of
scalar fields, the number of ensemble members that have
scalar values greater than the isovalue is first computed
at each grid point. Then, the counts are normalized by the
total number of ensemble members to get CPPs. Notice that
locations that are considered having a higher chance to be
on the isosurface are the locations with CPPs around 50%.
Hence, a triangle function centered at 50% is often used as
the transfer function to render a CPP field.

Fuzzy Isosurfacing Similar to CPP, fuzzy isosurfacing
first computes the number of scalar values above and be-
low the isovalue at each grid point, denoted as a and b,
respectively. The likelihood of the presence of the isosurface
is then computed for each grid point as g = a

b
− b

a
. If a = b,

g is set to zero; if a = 0 or b = 0, g is set to −N and N ,
respectively, where N is the number of ensemble members.
Because we have 50 ensemble members in this experiment,
the value of g is between -50 and 50. Fuzzy isosurfacing is
typically visualized using volume rendering with a transfer
function defined by triangle function centered at 0, because
locations that are considered having a higher chance to be
on the isosurface are the locations with a = b.

SDVR In SDVR, the distribution of scalar values at
each grid point is modeled as box-splines, which enables
interpolation of distributions at arbitrary location along
the viewing rays. The transfer function is then integrated
against the interpolated distribution at each sample point

along the viewing rays to obtain the expected color and
opacity. The expected colors and opacities are then blended
to get the volume rendering results. To visualize uncertain
isosurface of a give isovalue using SDVR, a triangle function
centered at the isovalue is used as the transfer function.

LCP Unlike the aforementioned methods, the LCP is
defined on grid cells instead of grid points. The LCP of
a grid cell is defined as the probability of the isosurface
intersecting the cell, which is from 0 to 1. To get the LCP of a
grid cell defined by several grid points, the joint distribution
is first constructed for the random variables defined on the
grid points. The LCP is then approximated by sampling
from the joint distribution and computing the percentage
of samples that the isosurface intersecting the cell.

SDE In contrast with previous methods, SDE is com-
puted based on the geometries of the isosurfaces. First, the
proposed bandwidth selection method is applied on the
isosurfaces, which suggests to use a bandwidth equals 0.185.
Then, SDE is computed based on the selected bandwidth.
Because SDE represents the PDF of the spatial distribution
of the isosurfaces, SDE integrates to 1 in the spatial domain.

The volume rendering results of the CPP, Fuzzy Isosur-
facing, SDVR, LCP, and SDE are shown in Figure 11(b)-
(f), respectively. Compared with the isosurfaces shown in
Figure 11(a), we can see that the results of CPP, Fuzzy
Isosurfacing, and SDVR assign nonzero probabilities to lo-
cations that no isosurfaces are passing through (e.g., empty
regions enlarged in Figure 11(a)). This is because the three
techniques model the uncertainty of the scalar values at
each grid point as an independent random variable without
considering correlations between the random variables at
different spatial locations. For example, for the adjacent
points P and Q selected from the empty regions in Fig-
ure 12(a), the distributions of the scalar values at points P
and Q are shown in Figure 12(b) and (c), respectively. If we
model the uncertainty of the scalar values at the two points
as independent random variables. The probability that the
isosurface passing through any points between P and Q is
nonzero, because it is possible that the scalar value at P is
greater than the isovalue and the scalar value at Q is less
than the isovalue. However, the random variables at P and
Q are correlated. Figure 12(d) shows the scatter plots of the
scalar values at P and Q. We can see that when the scalar
value at P is greater than the isovalue, the scalar value at
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Fig. 13. Visualization of the density fields and the underlying isosurfaces
for three representative clusters selected from the hierarchical clustering
tree for the synthetic ensemble scalar fields. The major trends of the
isosurfaces are extracted and highlighted.

Q is also greater than the isovalue, and vice versa. Hence,
the isosurface does passing through any points between
P and Q. By considering the correlations of the random
variables within each grid cell, the result of LCP model the
positional uncertainty of isosurface more correctly. Because
the SDE is computed based on isosurfaces that are extracted
from each ensemble member independently, spatial corre-
lations of scalar values within each ensemble member are
preserved. Hence, the result of SDE is comparable to the
result of LCP. However, the previous techniques require
uncertain scalar fields as input to model the positional
uncertainty of isosurfaces. For applications such as LCSs
and streamsurfaces, no field data can be directly used to
model the positional uncertainty of the surfaces. Unlike
the previous techniques, our method is able to model the
positional uncertainty of derived surfaces features, which
can be applied on LCSs and streamsurfaces as discussed
in the following sections 8.3 and 8.4. Moreover, unlike the
previous techniques which only produce one final result
for uncertain isosurfaces, our approach organizes ensemble
isosurfaces into a hierarchical representation based on their
similarities and enables interactive visual exploration of the
major trends. Figure 13 shows the results of the proposed
visual exploration method. By hierarchical clustering, the
isosurfaces are clustered based on the similarities between
their contribution to the SDE, and a hierarchical clustering
tree is visualized to guide the exploration of the isosurfaces.
Three representative clusters of isosurfaces are shown in
Figure 13, with each column representing one cluster. The
contribution of each cluster to the SDE is represented as a
density field and visualized using volume rendering. Com-
pared with previous methods, the proposed method is able
to extract and highlight the major trends of the isosurfaces.

8.2.2 Real-world Ensemble Simulation Data

Our second experiment was performed on the Mas-
sachusetts Bay Sea Trial (MBST-98) ensemble dataset, which
is an interdisciplinary (i.e., physical—-biogeochemical) fore-
cast simulation based on the Littoral Ocean Observing and
Predicting System [68], [69]. The simulation generated an
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Fig. 14. Visualization of the isosurfaces extracted from the CHL variable
of the MBST-98 ensemble data with an isovalue 1.4 using (a) spaghetti
plots and (b)-(d) SDE with different transfer functions. The vertical axis
represents water depth in meters, which increases from bottom to top.

Boston Harbor

Stellwagen Bank
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0

Fig. 15. Visualization of the density fields for four representative clusters
based on the isosurfaces generated from the CHL variable of the MBST-
98 ensemble data with an isovalue 1.4. Distinct features are highlighted
at Boston Harbor and Stellwagen Bank for the four clusters.

ensemble of 600 members with more than 30 variables
from August 17 to October 5, 1998 in Massachusetts Bay.
In this experiment, we select the CHL variable, which
represents the chlorophyll-a concentration, at the time step
representing September 2, 1998. We extracted the isosur-
face at isovalue 1.4 mg/m3 for each ensemble member,
because phytoplankton are contaminated in regions with
CHL equals 1.4 mg/m3. The SDE is then computed for the
extracted isosurfaces. The isosurfaces are visualized using
spaghetti plots as shown in 14 (a). By applying the proposed
bandwidth selection method, the bandwidth σ was set to
0.38. The SDE is visualized using volume rendering with
three different transfer functions as shown in Figure 14 (b)-
(d). A linear opacity transfer function is used in Figure 14(b).
By comparing with the spaghetti plots, we can see that the
SDE can reveal the distribution of the surfaces. Moreover,
by adjusting the transfer function, the low and medium
probability density regions can be highlighted in Figure 14
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Fig. 16. Visualization of the uncertain LCSs extracted from the HRRR
ensemble dataset: (a) spaghetti plots of the surfaces, (b) SDE, and (c)
density field created by SPH.

(c)-(d). We can see that the low probability density regions
are corresponding to the outline surfaces.

Figure 15 visualizes four selected clusters of isosurfaces
based on their contribution to the SDE, where each row
represents one cluster. The contribution of each cluster to the
SDE is represented as a density field and visualized using
volume rendering. Overall, the isosurfaces with chlorophyll-
a concentration 1.4 mg/m3 have a higher likelihood to be
located at Boston Harbor and Stellwagen Bank compared
with other regions. By comparing the density fields across
clusters, distinct features are highlighted. For example, the
density field in the second cluster reveals that the isosur-
faces have lower likelihood at Boston Harbor compared
with other clusters; and density fields in the first, third, and
fourth clusters highlight different regions at Boston Harbor.
Many other features can also be identified by exploring the
density fields guided by the hierarchical clustering tree.

8.3 Lagrangian Coherent Structures in Uncertain Flow

Fields

We also used the proposed technique for visualizing and
analyzing uncertain LCSs [10] for uncertain unsteady flow
fields. The LCSs are surfaces that represent the boundaries
between attracting or repelling particles in unsteady flow
fields. Because the positional uncertainty of LCSs can not
be derived from the flow fields directly, Guo et al. [40] pre-
sented a technique to visualize and analyze uncertain LCSs
by extracting an ensemble of LCSs and then constructing a
density field through a density estimation method based on
SPH and zero-order kernel functions. They calculated the
density of an arbitrary location x by calculating the area
of the surfaces within a sphere centered on x, and then
normalized the results by the volume of the sphere.

In this experiment, we calculated SDE for the uncer-
tain LCSs extracted from High-Resolution Rapid Refresh
(HRRR) data [70] and compared with SPH. The HRRR is

4.4e-7

0

(a)

(b)

(c)

8.4e-7

0

Fig. 17. Visualization of the streamsurfaces generated from the synthetic
ensemble flow around a confined square cylinder, where the flow is
moving from left to right: (a) spaghetti plots of the streamsurfaces (b)
volume rendering of the SDE, and (c) two clusters of density fields that
highlight different flow features.

a National Oceanic and Atmospheric Administration real-
time atmospheric model. The HRRR is updated hourly and
produces a forecast up to 16 hours. It is available to the
public through the Unidata’s THREDDS Data Server 2. We
used an ensemble of the HRRR simulation outputs to extract
uncertain LCSs, and we used the means and standard devia-
tions of the wind field on each grid point across the ensem-
ble members to model the uncertainty. Then we extracted
uncertain LCSs through Monte Carlo particle tracing, finite-
time Lyapunov exponents computation, and ridge detection
as presented in [40]. The starting time of particle tracing was
00:00:00 UTC, August 27, 2015, and the advection time was
5 hours. Figures 16 (b) and (c) compare the visualization
results of SDE and SPH with the spaghetti plots shown in
Figure 16 (a) as reference. The radius of the sphere was set to
2 for SPH. To compare with SPH, the bandwidth σ was set to
0.67 for SDE calculation, such that the points on the surface
with distances to the target location greater than 2 have
negligible contribution to the density estimation result. In
contrast with SPH, we use higher-order kernel functions to
calculate surface densities, which gives more smooth results.
Based on the visualization of SDE, regions near the Rocky
Mountains that with upward and downward motions have
higher likelihoods containing LCSs than other regions.

8.4 StreamSurfaces in Ensemble Flow Fields

We use SDE to explore streamsurfaces generated from a
synthetic ensemble fluid flow dataset based on a 3D flow
around a confined square cylinder [71]. The ensemble is
obtained by injecting multiple realizations of noise in the
vector field along the y direction. The noise samples are
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generated by sampling 8 Gaussian kernels with shifted
means and standard deviation 0.01, with 5 samples per
kernel, to create an ensemble vector dataset with 40 mem-
bers. An ensemble of streamsurfaces are then generated for
a seeding curve close to the square cylinder. By applying
the proposed bandwidth selection method, the bandwidth
σ was set to 0.3. Figure 17 shows the visualization of the
density estimation results generated based on the stream-
surfaces. The streamsurfaces are visualized using spaghetti
plots as shown in Figure 17 (a), and the SDE is visualized
in Figure 17 (b). Compared with the streamsurfaces, we find
that the SDE clearly reveals the variability of the stream-
surfaces. Before the particles reach the square cylinder, the
streamsurfaces are close to each other, shown in the SDE as
high surface densities. After the particles reach the square
cylinder, the flows are separated by the square cylinder,
also highlighted in the SDE. The visualization of the SDE
also highlights regions near the square cylinder on the
right with relatively higher surface densities than regions
far away from the square cylinder on the right, which can
not be shown by overlaid rendering of the streamsurfaces
due to occlusion. Figure 17 (c) visualizes two clusters of
streamsurfaces as density fields selected in the hierarchical
clustering tree, which highlight distinct flow features.

9 CONCLUSIONS, LIMITATIONS, AND FUTURE

WORK

In this work, we presented SDE to model positional un-
certainty of surface features in 3D ensemble simulation
data. SDE is computed based on surfaces represented as
polygon meshes with no need of field datasets. Hence, our
method can be applied on applications that no field datasets
are available to model the positional uncertainty of the
surfaces. We also presented a bandwidth selection method
for SDE computation. Major trends and outlines of ensemble
surfaces can also be extracted based on SDE. To this end,
we transformed ensemble surfaces into density fields based
on their contribution to SDE and organized the resulting
density fields into a hierarchical representation based on
their pairwise distances. We compared the proposed method
with alternative density estimation methods in terms of ac-
curacy and performance on synthetic ensemble surfaces that
have known spatial distributions. We then demonstrated
the effectiveness and usefulness of the proposed method for
variate applications.

There are a few limitations of our approach that we
would like to address in the future. First, we would like to
reduce the computation time of SDE for interactive band-
width selection and exploration. Second, the bandwidth
selection method is limited to single smoothing for all direc-
tions currently. We would like to extend it to handle more
complex bandwidth matrices. Third, the distance between
density fields for clustering is limited to point-wise distance
metrics for density values over the entire domain. In the
future, we would like to study different distance metrics
as well as considering sub-domains instead of the entire
domain for clustering.
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Fig. 18. (a) Region over which Γ(h, a) gives the integral of the standard
bivariate normal distribution. (b) and (c) Bivariate normal integral over
areas defined by an edge of a given triangle.

APPENDIX

This appendix provides the method proposed by Owen [58]
for calculating the bivariate normal integral over an area
defined by an edge of a given triangle. He first defines
a function Γ(h, a) that gives the integral of the standard
bivariate normal distribution over the area between line
v = au and v = 0 and to the right of line u = h, as shown in
Figure 18 (a). Γ(h, a) is then used to calculate the bivariate
normal integral over an area defined by an edge of a given
triangle, as the shaded areas shown in Figures 18 (b) and (c).

The function Γ(h, a) is defined as

Γ(h, a) =
arctan(a)

2π
−

1

2π

∞
∑

i=0

cia
2i+1, (17)

where

ci = (−1)i
1

2i+ 1
(1− e

− 1

2
h2

∑i
j=0

h2j

2jj! ), (18)

which converges rapidly for small a and h. To reduce run-
time computations, we generate a lookup table for the Γ-
function for h from 0 to 4.76, a from 0 to 1, and a = ∞,
with all 0.01 in between. We combine the lookup table with
bilinear interpolation to obtain the Γ(h, a) for given a and
h. For negative h or a, Γ(−h, a) = Γ(h, a) and Γ(h,−a) =
−Γ(h, a). For 1 < a < ∞, Γ(h, a) is obtained by using

Γ(h, a) =
1

2
Φ(h) +

1

2
Φ(ah)−Φ(h)Φ(ah)− Γ(ah,

1

a
), (19)

where Φ(x) is the cumulative distribution function of the
standard normal distribution. For h > 4.76, Γ(h, a) = 0.

With the Γ-function, the integral of the standard bivari-
ate normal distribution over an area defined by an edge of a
given triangle can be obtained. For example, in Figure 18 (b),
let AB be an edge of a triangle. The integral of the standard
bivariate normal distribution over the shaded area, denoted
as αAB , can be obtained by using Γ(h, a1) − Γ(h, a2) for
a1 > a2, where h is the length between the origin and its
projection W on the line defined by AB, which is

h =
|u1v2 − u2v1|

√

(u2 − u1)2 + ((v2 − v1)2
, (20)

and the slopes a1 and a2 can be computed with

a1 =
|u1(u2 − u1) + v1(v2 − v1)|

|u1v2 − u2v1|
(21)

a2 =
|u2(u2 − u1) + v2(v2 − v1)|

|u1v2 − u2v1|
, (22)

where (u1, v1)
T and (u2, v2)

T are the coordinates of the
vertices A and B. If W lies between A and B, then
αAB = Γ(h, a1) + Γ(h, a2), as shown in Figure 18 (c).
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V. Pascucci, and P. P. Pébay, “Analysis of large-scale scalar data
using hixels,” in Proceedings of 2011 IEEE Symposium on Large Data
Analysis and Visualization, 2011, pp. 23–30.
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[31] K. Pöthkow and H.-C. Hege, “Nonparametric models for uncer-
tainty visualization,” Computer Graphics Forum, vol. 32, no. 3, pp.
131–140, 2013.

[32] S. Hazarika, A. Biswas, and H. W. Shen, “Uncertainty visualization
using copula-based analysis in mixed distribution models,” IEEE
Transactions on Visualization and Computer Graphics, vol. 24, no. 1,
pp. 934–943, 2018.

[33] C. M. Wittenbrink, A. T. Pang, and S. K. Lodha, “Glyphs for
visualizing uncertainty in vector fields,” IEEE Transactions on
Visualization and Computer Graphics, vol. 2, no. 3, pp. 266–279, 1996.

[34] M. Hlawatsch, P. Leube, W. Nowak, and D. Weiskopf, “Flow radar
glyphs & static visualization of unsteady flow with uncertainty,”
IEEE Transactions on Visualization and Computer Graphics, vol. 17,
no. 12, pp. 1949–1958, 2011.

[35] S. K. Lodha, A. Pang, R. E. Sheehan, and C. M. Wittenbrink,
“UFLOW: Visualizing uncertainty in fluid flow.” in Proceedings of
IEEE Visualization 1996, 1996, pp. 249–254.

[36] R. P. Botchen, D. Weiskopf, and T. Ertl, “Texture-based visu-
alization of uncertainty in flow fields,” in Proceedings of IEEE
Visualization, Oct 2005, pp. 647–654.
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